
Defeating Automated Web 
Assessment Tools

Saumil Shah
CEO, Net-Square

Author: “Web Hacking - Attacks and Defense”
BlackHat Briefings - Europe, Asia 2005



PurposePurpose

• To illustrate the limitations of automated 
assessment tools.

• Identify new areas of research.
• Give more insight to developers.



Automated Web Assessment - TheoryAutomated Web Assessment - Theory

• Testing the web server.
• Crawling the web application.
• Classifying the resources gathered.
• Mapping the application.
• Identifying attack points. (e.g. SQL, XSS)
• Identifying authentication points.
• Performing the attacks.
• Looking for known vulnerabilities.



Automated Web Assessment - TheoryAutomated Web Assessment - Theory

• Testing logic:
• Depends on HTTP response codes.
• Responses can be easily changed.
• e.g. all pages return 200 OK.

• Modern crawlers identify “error signatures”
first.
• e.g. Page Signatures (refer to my earlier talks on 

advanced HTTP assessment techniques).



Error SignaturesError Signatures

• Send a request for a non-existent page.
• Record the response signature. (404 signature)

• Send a malformed HTTP request.
• 400 / 500 signature.

• Proceed with crawling by identifying 
signatures from the responses, and not 
looking at the response codes.



Elimination of false positivesElimination of false positives

• Error signatures.
• String comparision.
• Regular expressions comparision.
• Certain heuristic techniques.



What is a crawler, actually?What is a crawler, actually?

• A functional HTTP client.
• Must mimic the browser as far as possible.
• Send HTTP requests.
• Receive the HTTP response.
• Parse the HTTP response header.
• Parse the HTTP response contents.

• Sift through the HTML.
• Recover from malformed HTML errors.



Ways to defeat crawlersWays to defeat crawlers

• Are you really a browser?
• Are you really a human sitting on a browser?
• … or are you a dog?
• Crawlers have overcome lots of hurdles so 

far…
• …but even they have limits.
• Humans and crawlers “use” the web 

application in different ways.



Browsers vs. CrawlersBrowsers vs. Crawlers

• Well formed HTTP request header:
• User-Agent string
• HTTP referrer

• Cookie handling and cookie replay.
• Easy.
• Many crawlers do this quite well.

• Forced HTTP compression.
• Not a lot of crawlers have gzip decoding.
• Not difficult at all.



Browsers vs. CrawlersBrowsers vs. Crawlers

• Javascript interpretation.
• Difficult proposition for browsers.
• Not entirely impossible.
• Can cause loss of hair.



Humans vs. CrawlersHumans vs. Crawlers

• Attacking the WYSIWYG principle:
• Humans don’t click on clear pixels.
• Developers still believe HIDDEN fields are 

secure!
• Humans do not cause a lot of errors.

• …crawlers do.
• Visual recognition of an error situation:

• “Something’s not right here”.
• Crawlers can fail all these tests.



Ways to bog down crawlersWays to bog down crawlers

• Random error responses, never the same 
response each time.
• Will cause false positives in error identification.
• Keep altering the HTML structure.
• Use dictionary words.

• Custom error handlers.
• Most web servers allow this

• Make the crawler crawl through errors.



Ways to bog down crawlersWays to bog down crawlers

• Random hyperlinks.
• Links that lead to nowhere.
• Cause errors that generate more links.

• Throw up non-existent error conditions:
• e.g. SQL injection error messages.
• Browsable directory outputs.

• Throw up non-existent HTML forms.



PHP_GUARDPHP_GUARD

• A prototype crawler defeating mechanism.
• Causes the best of crawlers and assessment 

tools to throw up useless reports.
• To illustrate the point that nothing is as good 

as manual analysis and testing.



PHP_GUARDPHP_GUARD

• Implemented as a set of PHP scripts.
• Easy to incorporate in any PHP driven 

application.
• Concepts are not rocket science:

• can be ported to other platforms as well (e.g. 
ASP, ASP.NET, JSP, etc).

• Actively seeking collaborators!
• Publicly available soon.



PHP_GUARD - featuresPHP_GUARD - features

• Enforces strict session control.
• Uses PHP’s session management APIs.
• No cookies - no pages.

• Forced HTTP compression:
• Coming soon!

• Random error generator.



PHP_GUARD - random error generatorPHP_GUARD - random error generator

• Varying HTTP response codes:
• 404, 302, 200

• Structurally different HTML all the time.
• Based on dictionary words.
• Contains hyperlinks galore!
• Includes error strings to catch regexp 

matching.
• Includes HTML authentication forms.



PHP_GUARD - error count limitPHP_GUARD - error count limit

• Error count limits set a threshold to the 
maximum number of errors a web client is 
allowed to cause.

• Per-session basis.
• If count exceeds the threshold…
• … you’re blacklisted.
• Ability to slow down responses.

• Crawl 1000 links took a whole day!



PHP_GUARD setupPHP_GUARD setup

• /usr/local/apache/htdocs/php_guard
• index.html
• error_control.php
• set_session.php
• force_session.php
• clearpixel.php
• clearpixel.gif



PHP_GUARD Apache configurationPHP_GUARD Apache configuration

• httpd.conf
• ErrorDocument 404 /php_guard/error_control.php
• ErrorDocument 403 /php_guard/error_control.php
• ErrorDocument 500 /php_guard/error_control.php



PHP_GUARD - use within applicationsPHP_GUARD - use within applications

• Sample index.php file (starting point):

<?php
// initialize PHP_GUARD
include("php_guard/set_session.php");

// include globals
include("include/global.php");
:
// generate random clearpixel links
include("php_guard/clearpixel.php");
:

?>



PHP_GUARD - use within applicationsPHP_GUARD - use within applications

• Any other php file (not the starting point):

<?php
// initialize PHP_GUARD
include("php_guard/force_session.php");

:
:

?>



PHP_GUARD - testsPHP_GUARD - tests

• wget
• Paros
• NTO insight



Closing ThoughtsClosing Thoughts

• “You need to know what you are doing!”
• Web Hacking: Attacks and Defense

Saumil Shah,
Shreeraj Shah,
Stuart McClure
Addison Wesley – 2002.



Goodies to followGoodies to follow

• New version of httprint coming out soon.
• NStools:

• Net-Square’s toolkit.
• Contributions to Sensepost’s Wikto.



Thank you!

BlackHat Briefings - Europe, Asia 2005

saumil@net-square.com

http://net-square.com/


